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Self-trapping of strong electromagnetic beams in relativistic plasmas
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Interaction of an intense electromagnetic~em! beam with a relativistic electron-positron (e-p) plasma is
investigated. It is shown that the thermal pressure brings about a fundamental change in the dynamics—
localized, high amplitude, em field structures, not accessible to a cold~but relativistic! plasma, can now be
formed under well-defined conditions. The possibilities of trapping em beams in self-guiding regimes to form
stable two-dimensional solitonic structures in a puree-p plasma are worked out.
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Relativistic electron-positron (e-p) dominated plasmas
may be created in a variety of astrophysical situatio
Electron-positron pair production cascades are believed
occur in pulsar magnetospheres@1#. Thee-p plasmas are also
likely to be found in the bipolar outflows~jets! in active
galactic nuclei~AGN! @2#, and at the center of our own ga
axy @3#. The presence ofe-p plasma is also argued in th
MeV epoch of the early universe. In the standard cosmolo
cal model, temperatures in the MeV rangeT
;1010 K–1 MeV) prevail up to timest51 s after the big
bang@4#.

Studying wave self-modulation and soliton formation
e-p plasmas is, therefore, of considerable importance in
derstanding the overall dynamics of these systems. The
istence of stable localized envelope solitons of em radia
has been suggested as a potential mechanism for the pro
tion of micropulses in AGN and pulsars@5#. Localized soli-
tons created in the plasma dominated era are also invoke
explain the observed inhomogeneities of the visible unive
@6,7#.

In Refs.@6,8# it was argued that localized solitons can
formed if the interaction between the em field and acou
phonons is taken into account—envelope solitons propa
ing with subsonic velocities may then emerge. However, i
conceivable that soliton solutions obtained in a on
dimensional~1D! formulation will turn out to be unstable in
higher dimensions.

It is, therefore, a matter of some priority that we explo
the possibility of finding stable multidimensional soliton s
lutions in e-p plasmas. A 3D dynamics of envelope solito
of arbitrary strong em fields in such a plasma contamina
by a small fraction of heavy ions was analyzed in Ref.@7#. It
was shown that, in a transparent plasma, em pulses witL i
!L' ~whereL i and L' are, respectively, the characterist
longitudinal and transverse spatial dimensions of the fie!
may propagate as stable, nondiffracting and nondispers
objects~light bullets!. These bullets are exceptionally robus
they can emerge from a large variety of initial field distrib
tions, and are remarkably stable. In these studies, the
field is pulse like with a longitudinal localization much stro
ger than the transverse; the ponderomotive pressure forc
such a pulse causes the plasma to move in the directio
propagation, leading to large density bunching. The local
1063-651X/2002/65~4!/047402~4!/$20.00 65 0474
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tion is brought about by the charge separation electric fi
~usually absent in a puree-p plasma! created by the ionic
contamination—the thermal pressure is not able to do
because the bunches move with a speed close to the spe
light.

In the present paper we investigate the dynamics of
fields in the opposite limit i.e., we study the ‘‘beam’’ (L'

!L i) rather than the pulse (L'@L i) dynamics. For a plasma
transparent to the beam, we apply a fully relativistic hyd
dynamic model to demonstrate the possibility of beam s
trapping leading to the formation of stable 2D solitonic stru
tures in a puree-p plasma. The high-frequency pressu
force of the em field~tending to completely expel the pair
radially from the region of localization! is now overwhelmed
by the thermal pressure force, which opposes the radial
pansion of the plasma, creating conditions for the format
of the stationary self-guiding regime of beam propagation

If the velocity distribution of the particles of speciesa
(5e,p, wheree,p denote, respectively, electrons and po
trons! is taken to be a local relativistic Maxwellian, the hy
drodynamics of such fluids is described by

]

]t
~Gapa!1m0ac2

“~Gaga!5eaE1@ua3Va# ~1!

and

]Va

]t
5“3@ua3Va# ~2!

~see @7,9# for the details!, where Va5(ea /c)B1“

3(Gapa) is the so called generalized vorticity. Herepa
5gam0aua is the hydrodynamical momentum,E andB are
the electric and magnetic fields,Ga5K3(za)/K2(za) is the
‘‘effective mass,’’K2 andK3 are, respectively, the modifie
Bessel functions of the second and third order, andza
5m0ac2/Ta ; m0a andTa are the particle invariant rest mas
and temperature, respectively, andna is the density in the
laboratory frame of the fluid of speciesa. The hydrodynami-
cal velocityua and the relativistic factorga are related to the
momentum by the standard relationsua5pa /m0aga , ga

5(11pa
2/m0a

2 c2)1/2.
©2002 The American Physical Society02-1
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Notice that in Eq. ~1! the thermal pressurePa
(5naTa /ga) appears through the temperature depend
factorG defined byga“Pa5m0ac2na“Ga . The system of
Eqs.~1!, ~2! is augmented by the equation of state

na

ga

za

K2~za!
exp~2Gaza!5const. ~3!

For the current effort, we apply Eqs.~1!–~3! for wave
processes in an unmagnetized plasma. From Eq.~2! it fol-
lows that if the generalized vorticity is initially zero (Va
50) everywhere in space, it remains zero for all subsequ
times. We assume that before the em radiation is ‘‘switch
on’’ the generalized vorticity of the system is zero.

In what follows, for notational convenience, we repla
the subscripts~e! and~p! by superscripts (2) and (1). Also,
it is convenient to introduce the temperature dependent
mentumPa5Gapa and relativistic factorGa5Gaga . We
assume that the equilibrium state of the plasma is chara
ized by an overall charge neutralityn`

25n`
15n` , wheren`

2

andn`
1 are the unperturbed number densities of the electr

and positrons in the far region of the em beam localizati
In most mechanisms for creatinge-p plasmas, the pairs ap
pear simultaneously and due to the symmetry of the prob
it is natural to assume thatT`

25T`
15T` , whereT`

2 andT`
1

are the respective equilibrium temperatures.
We shall assume that for the radiation field of interest

plasma is underdense and transparent, i.e.,e5ve /v!1,
where v is the mean frequency of em radiation andve
5(4pe2n` /m0e)

1/2 is the plasma frequency. We will displa
the entire set in terms of potentials~the Coulomb gauge
“•A50 will be used! E52c21] tA2“f,B5“3A, and
the dimensionless quantitiest̃ 5vt, r̃5(v/c)r, T̃6

5T6/m0ec
2, Ã5eA/(m0ec

2), f̃5ef/m0ec
2, P̃6

5P6/(m0ec), and ñ65n6/n` . Suppressing the tilde, w
arrive at the dimensionless equations

]P6

]t
1“G657

]A

]t
7“f, ~4!

]2A

]t2
2DA1

]

]t
“f2e2~J12J2!50, ~5!

Df5e2~n22n1!, ~6!

]n6

]t
1“•J650 ~7!

with J65n6P6/G6 and G65A(G6)21(P6)2. The spe-
cies equation of state is

n6

G6 f ~T6!
5

1

G`
6 f ~T`!

, ~8!

where f (T6)5@K2(1/T6)T6/G6#exp@G6/T6#.
Of various techniques that could be invoked to investig

Eqs.~4!–~8! to study the self-trapping of high-frequency e
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radiation propagating along thez axis, we choose the metho
presented in the excellent paper by Sunet al. @10#. The
method is based on the multiple scale expansion of the e
tions in the small parametere. Assuming that all variations
are slow compared to the variation in ‘‘moving’’ with a ve
locity a, variable j5z2at, we expand all quantities
Q5(A,f,P6,n6, . . . ) as Q5Q0(j,x1 ,y1 ,z2)
1eQ1(j,x1 ,y1 ,z2), where (x1 ,y1 ,z2)5(ex,ey,e2z) denote
the directions of slow change, anda15(a221)/e2;1. We
further assume that the high-frequency em field is circula
polarized, A0'5 1

2 ( x̂1 i ŷ)A exp(ij/a)1c.c. Here A is the
slowly varying envelope of the em beam,x̂ andŷ denote unit
vectors, and c.c. is the complex conjugate. We now giv
short summary of the steps in the standard multiple-sc
methodology~Ref. @10#!. To lowest order ine, we obtain
the following. The transverse~to the direction of em
wave propagationz) component of Eq.~4! reduces to
P0'

6 57A0' and for the longitudinal components we get

2a
]P0z

6

]j
1

]G0
6

]j
57~2a!

]A0z

]j
7

]f0

]j
. ~9!

Equations ~5! and ~6! yield ]j“'f05]j
2f05]jA0z50,

where“' is the perpendicular Laplacian in (x1 ,y1). These
relations imply thatf and A0z do not depend on the fas
variablej. For the self-trapping problem, we can assume t
A0z5P0z

6 50 @10#. From Eq.~9!, and from the lowest-orde
continuity Eq.~7!, we obtain]jG0

65]jn0
650, i.e.,G0

6 and
n0

6 also do not depend on the fast variablej.
To the next order~in e), the transverse component of E

~4! reads

2a
]P1'

6

]j
1“'G0

657~2a!
]A1'

]j
7“'f0 . ~10!

Averaging over the fast variablej we obtain “'G0
6

57“'f0, yielding the trivial solutionf050 andG0
65G0

5const. Note that from Eqs.~6! and~8!, we can deduce tha
n0

15n0
25n0 andT0

15T0
25T0.

Thus, as one would expect, the low-frequency motion
the e-p plasma is driven by the ponderomotive pressu
(;P0'

2 ) of the high-frequency em field and this force, bein
the same for the electrons and positrons, does not ca
charge separation. It is also evident that, because of the s
metry between the electron and positron fluids, their te
peratures, being initially equal, will remain equal during t
evolution of the system. The relation between the em fi
and the temperature can be found using the equationG0
5const obtained above. By choosing the constant by req
ing that at infinityA→0 andT0→T` , we derive

G2~T0!5G2~T`!2uAu2. ~11!

Note that the conditionG2(T`).uAu2 prevents wave break
ing from occurring.

We are now ready to deal with the equation for the slow
varying envelopeA of the em beam. To the lowest order ine,
one finds from Eq.~5!
2-2
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a1

]2A0'

]j2
2“'

2 A0'22
]2A0'

]j]z2
12

n0~T0!

G`
A0'50. ~12!

For deriving this equation, we used the relationG0

5AG2(T0)1uAu25G` and n0(T0)5 f (T0)/ f (T`) which
follows from Eq. ~8!. In terms of the slowly varying enve
lope A, Eq. ~12! can be reduced to the following equation

i
]A

]z
1“'

2 A1CA50, ~13!

whereC512n0(T0) represents the generalized nonline
ity. Here the subscripts for the variables (z2 ,x1 ,y1) are
dropped for simplicity and renormalization of the variabl
z→zG` , r'→r'AG`/2 is made. We also assumed witho
loss of generality that (a221)/e2a252/G` , which in di-
mensional units coincides with the linear dispersion relat
of the em wave in ane-p plasma, namely,v252ve

2/G`

1k2c2 provided thata5v/kc.
Thus, the dynamics of em beams in hot relativistice-p

plasma has become accessible within the context of a ge
alized nonlinear Schro¨dinger equation~NSE! ~13!. We seek
the localized 2D soliton solutions of Eq.~13!, and analyze
the stability of such solutions. The companion equation~11!
can be viewed as a transcendental algebraic relation betw
T0 and uAu2. Thus we conclude thatC is a function ofuAu2

@C5C(uAu2)#. Unfortunately, it is not possible, in genera
to derive an explicit analytic relationC5C(uAu2) for arbi-
trary value ofT` . Some qualitative deductions readily fo
low. Equation~11! shows that the presence of em radiati
reduces the temperatureT0. Sinced f(T0)/dT0.0, we con-
clude that the plasma densityn0(T0) is also reduced in the
region of em field localization which is in accordance w
adiabatic motion of the plasma. For higher strength of the
field, a complete expulsion of plasma, i.e., plasma cavitat
can take place (n0→0); this was predicted in Ref.@11#. Thus
the nonlinearity functionC shows a saturating charact
with increase of the em field strength@note that the presen
model is valid provideduAu2/(G`

2 21)<1#. To illustrate, we
exhibit in Fig. 1 a plot ofC versusuAu2 for T`50.1. One
can see that the nonlinearity function indeed saturates at
intensity. For small temperatures, we can even obtain an
lytic expression for the functionC. RememberingT0<T` ,

FIG. 1. The nonlinearity functionC versusuAu2 for T`50.1.
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assumingT`!1, and usingn0(T0)5 f (T0)/ f (T`) along
with the asymptotic expansionsG0('115T0/2) and f
('T0

3), we derive for the nonlinearity function

C512S 12
uAu2

5T`
D 3/2

. ~14!

Equations~13! and ~14! admit a stationary, nondiffracting
axially symmetric solution of the form A/A5T`

5U(r )exp(ilz) wherer 5(x21y2)1/2 andl is the nonlinear
wave-vector shift. The radially dependent envelopeU(r )
obeys an ordinary nonlinear differential equation

d2U

dr2
1

1

r

dU

dr
2lU1C~U2!U50, ~15!

where C512(12U2)3/2. This equation corresponds to
boundary value problem with the following boundary cond
tions: U has its maximumUm at r 50, andU→0 asr→`.
We remind the reader that it was shown in a seminal pape
Vakhitov and Kolokolov@12# that such solutions exist fo
arbitrary saturating nonlinearity functionsC, provided that
the eigenvaluel satisfies 0,l,Cm , where Cm is the
maximal value of the nonlinearity function. We consider on
the lowest-order nodeless solution of Eq.~15!, i.e., the
‘‘ground state,’’ which is positive and monotonically de
creasing with increasingr. In the asymptotic region the so
lution must decay asUr→`;exp(2Alr )/Alr . Our nonlin-
earity function C has a maximumCm51 found at Um
(51), i.e., at the maximally allowed strength of the field. A
a consequence the upper bound of the propagation con
lc must satisfylc,Cm . Numerical simulations show tha
the amplitude of the ground state solutionUm5U(r 50,l) is
a growing function ofl and it acquires its maximum valu
(51) at l5lc'0.29. The solution represents a trapped,
calized em solitary beam. The stability of the solitonic so
tions can be investigated using the criterion of Vakhitov a
Kolokolov @12#—the soliton is stable against small, arbitra
perturbations ifdN/dl.0, whereN is the power of the
trapped mode:N(l)52p*0

`drrU 2(r ,l). In Fig. 2 we plot
the numerically obtained solutions ofN for variousl. Since
the curve has positive slope everywhere, the cor

FIG. 2. The beam powerN versusl for T`!1 andT`51.
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 047402
sponding ground state solution is stable for 0,l,lc . No-
tice that the power of the solitary beam always exceed
certain critical valueN.Nc'7.8. We also know thatN must
be bounded from above (N<Nm'10.5).

For arbitrary temperatures, the explicit form ofC
5C(uAu2) cannot be found. However, due to its saturati
character, solutions with properties similar to the small te
perature case~which can be explicitly solved! might be ex-
pected. Using relations~8! and ~11!, we numerically find a
stationary solution of Eq.~13! for arbitraryT` . For conve-
nience we use following representation of vector poten
A/Ac5U(r )exp(ilz), whereAc5(G`

2 21)1/2. Although the
maximum value ofU is still restricted by the condition 0
,Um<1, the amplitude of the vector potentialAm can reach
a considerable value. For ultrarelativistic temperatures,T`

@1, we haveAc5A15T`@1, and since 0,Am<Ac a soli-
ton solution with ultrarelativistic strength of the em field
possible. Here we present the results of simulations forT`

51 ~i.e., T`'0.5 MeV). The solution exists provided
,l,lc ('0.22). The profiles of the fieldU(r ), the plasma
density n0(r ), and the temperatureT0(r ) are exhibited in
Fig. 3 for l50.1. One can see that in the region of fie
localization the plasma temperature and density are redu
Similar plots could be obtained for all allowed values ofl.
Whenl→lc , plasma cavitation takes place, i.e., atr 50 the
plasma density and temperature tend down to zero. The

FIG. 3. Normalized em fieldU, plasma temperatureT0, and
densityn0 versusr for T`51.
d
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pearance of zero temperature is not surprising since the
responding region is the ‘‘plasma vacuum;’’ all particles ha
gone away. The dependence ofN on l is presented in Fig. 2
One can see that the curveN5N(l) has a positive slope an
the corresponding solitary solutions are stable against s
perturbations.

The detailed dynamics of the arbitrary field distributio
must be studied by direct simulations of Eq.~13!. Our simu-
lations show that this equation, with the nonlinearity partic
lar to the problem at hand, reproduces the general expe
behavior of the NSE with saturating nonlinearities@7#. For
all such systems the beam monotonically diffracts if t
beam power is below a critical value (N,Nc), and it is
trapped ifNm.N.Nc . In the latter case, the beam param
eters oscillate near the equilibrium, ground state valu
These oscillations monotonically decrease with increasinz
due to the appearance of the radiation spectrum. For largz,
the oscillations are damped out, and the formation of
soliton in its ground state takes place. If the initial profile
the beam is close to the equilibrium one, the beam quic
reaches the ground state equilibrium, and propagates f
long distance without distortion of its shape. ForN.Nm , the
multistream motion of the plasma prevents the system fr
settling in a steady state.

In conclusion, applying a reductive perturbation tec
nique, the system of relativistic Maxwell-fluid equations w
reduced to a 2D nonlinear Schro¨dinger equation with a satu
rating nonlinearity. We found that if the strength of the e
field amplitude is below the wave breaking limit, the bea
can enter the self-trapped regime, resulting in the format
of stable, self-guided 2D solitonic structures. The beam tr
ping owes its origin to the thermal pressure~which opposes
the ponderomotive pressure!. In the region of beam trapping
the plasma density as well as its temperature is reduced
under certain conditions these parameters can be red
considerably~i.e. plasma cavitation takes place!.
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