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Self-trapping of strong electromagnetic beams in relativistic plasmas
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Interaction of an intense electromagnef&m) beam with a relativistic electron-positroe-f) plasma is
investigated. It is shown that the thermal pressure brings about a fundamental change in the dynamics—
localized, high amplitude, em field structures, not accessible to a(baldrelativistio plasma, can now be
formed under well-defined conditions. The possibilities of trapping em beams in self-guiding regimes to form
stable two-dimensional solitonic structures in a pewe plasma are worked out.
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Relativistic electron-positronefp) dominated plasmas tion is brought about by the charge separation electric field
may be created in a variety of astrophysical situations(usually absent in a pure-p plasma created by the ionic
Electron-positron pair production cascades are believed toontamination—the thermal pressure is not able to do this
occur in pulsar magnetosphefd3. Thee-p plasmas are also because the bunches move with a speed close to the speed of
likely to be found in the bipolar outflowgjets) in active  light.
galactic nucleiAGN) [2], and at the center of our own gal- In the present paper we investigate the dynamics of em
axy [3]. The presence oé-p plasma is also argued in the fields in the opposite limit i.e., we study the “beamL (

MeV epoch of the early universe. In the standard cosmologi<<L) rather than the pulse.( >L) dynamics. For a plasma

cal model, temperatures in the MeV rangeT ( transparent to the beam, we apply a fully relativistic hydro-
~10'° K-1 MeV) prevail up to times=1 s after the big dynamic model to demonstrate the possibility of beam self-
bang[4]. trapping leading to the formation of stable 2D solitonic struc-

Studying wave self-modulation and soliton formation in tures in a puree-p plasma. The high-frequency pressure
e-p plasmas is, therefore, of considerable importance in unforce of the em fieldtending to completely expel the pairs
derstanding the overall dynamics of these systems. The exadially from the region of localizatigris now overwhelmed
istence of stable localized envelope solitons of em radiatio®y the thermal pressure force, which opposes the radial ex-
has been suggested as a potential mechanism for the produyzansion of the plasma, creating conditions for the formation
tion of micropulses in AGN and pulsaf§]. Localized soli-  of the stationary self-guiding regime of beam propagation.
tons created in the plasma dominated era are also invoked to If the velocity distribution of the particles of specias
explain the observed inhomogeneities of the visible universé=e,p, wheree,p denote, respectively, electrons and posi-
[6,7]. trong is taken to be a local relativistic Maxwellian, the hy-

In Refs.[6,8] it was argued that localized solitons can be drodynamics of such fluids is described by
formed if the interaction between the em field and acoustic
phonons is taken into account—envelope solitons propagat- d )
ing with subsonic velocities may then emerge. However, it is a_t(Gapa) +Mp,CV(G,ye) =€,E+[u,XQ,] (1)
conceivable that soliton solutions obtained in a one-
dimensional1D) formulation will turn out to be unstable in 54
higher dimensions.

It is, therefore, a matter of some priority that we explore 90
the possibility of finding stable multidimensional soliton so- “
lutions ine-p plasmas. A 3D dynamics of envelope solitons
of arbitrary strong em fields in such a plasma contaminated
by a small fraction of heavy ions was analyzed in R&f. It ~ (see [7,9] for the detaily, where Q,=(e,/c)B+V
was shown that, in a transparent plasma, em pulseslyith X (GaP.) is the so called generalized vorticity. Hep,
<L, (whereL andL, are, respectively, the characteristic = Y«MoaU. IS the hydrodynamical momenturg, andB are
longitudinal and transverse spatial dimensions of the Jfieldthe electric and magnetic field&,=K3(z,)/K3(z,) is the
may propagate as stable, nondiffracting and nondispersing€ffective mass,”K, andKj; are, respectively, the modified
objects(light bullets. These bullets are exceptionally robust; Bessel functions of the second and third order, anpd
they can emerge from a large variety of initial field distribu- =Mo,C%/T,; My, andT, are the particle invariant rest mass
tions, and are remarkably stable. In these studies, the e@nd temperature, respectively, ang is the density in the
field is pulse like with a longitudinal localization much stron- laboratory frame of the fluid of species The hydrodynami-
ger than the transverse; the ponderomotive pressure force oél velocityu, and the relativistic factoy, are related to the
such a pulse causes the plasma to move in the direction shomentum by the standard relationg=p,/My,vs: Ya
propagation, leading to large density bunching. The localiza= (1+ p?/m3_c?)Y2.
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Notice that in Eg. (1) the thermal pressureP, radiation propagating along tlzeaxis, we choose the method
(=n,T,/y,) appears through the temperature dependenpresented in the excellent paper by Senal. [10]. The
factor G defined byy,VP,=m,c?n, VG,. The system of method is based on the multiple scale expansion of the equa-
Egs.(1), (2) is augmented by the equation of state tions in the small parameter. Assuming that all variations
are slow compared to the variation in “moving” with a ve-
locity a, variable é=z—at, we expand all quantities
Q:(Al(ﬁini!ni’ v ) as Q:QO(grxlayllZZ)
+€Q1(£,X1,Y1,2,), Where §;,y1,2,) = (ex, ey, €2z) denote

For the current effort, we apply Eq¢l)—(3) for wave  the directions of slow change, amad=(a’—1)/e>~1. We
processes in an unmagnetized plasma. From(Bqit fol-  further assume that the high-frequency em field is circularly

lows that if the generalize_d vortigity is initially zero(X, polarized, A, = 1(X+iY)Aexp(&a)+c.c. Here A is the
=0) everywhere in space, it remains zero for all subsequent

times. We assume that before the em radiation is “switche@fggsvag]'ggcinvizl?ﬁ: ggﬂelee?ck:)iarzrzgy\?v?ﬁivun::/e a
on” the generalized vorticity of the system is zero. ' " P jugate. 9

In what follows, for notational convenience, we replaceshort summary of the steps in the standard multiple-scale

: . thodology(Ref. [10]). To lowest order ine, we obtain
the subscript$e) and(p) by superscripts{) and (+). Also, me > L
it is convenient to introduce the temperature dependent mot—he following. The transversdto the direction of em

mentumlIl,=G_p, and relativistic factod” ,=G,y,. We waive_ pragagofnz)thcolmpo_rt]eg_t Olf Eq.(4) retduces t(t)
assume that the equilibrium state of the plasma is charactet-0-— /0L and for the longitudinal components we ge

n Z

a a

— ——exp(—G_z,)=const. 3
v Ko(zo) A—G,z,) ©)

ized by an overall charge neutrality, =nJ =n.,, wheren_, * *

- N dlly, dl'y IRy, dog
andn_, are the unperturbed number densities of the electrons —-a — =3 (- F—. (9)
and positrons in the far region of the em beam localization. 43 43 g I

In most mechanisms for creatirgp plasmas, the pairs ap-
pear simultaneously and due to the symmetry of the proble

o —_ Tt _ - +
itis natural to assume that, =T.. =T.., whereT., andT., relations imply that¢p and Ay, do not depend on the fast

are the respective equilibrium temperatures. variableé. For the self-trapping problem, we can assume that
We shall assume that for the radiation field of interest the ) ppINg p ’

plasma is underdense and transparent, ke we/w<1, Ao, =T15,=0 [10]. From Eq.(9), and from the lowest-order

where » is the mean frequency of em radiation ang cgntinuity Eq.(7), we obtaind.I'g =d.ng =0, i.e, I'; and
= (4me®n,, /mye) Y2 is the plasma frequency. We will display Mo also do not depend on the fast variagle
the entire set in terms of potentialthe Coulomb gauge To the next ordefin €), the transverse component of Eq.

V-A=0 will be used E=—c 19,A-V$ B=VxA, and (4 reads
the dimensionless quantitiest=wt, r=(w/c)r, T° .

[Equations (5) and (6) yield 9V | o= 2o= 3P0, =0,
whereV | is the perpendicular Laplacian ix{,y;). These

~ ~ olly, + dA1L
=T*/mec?, A=eAl(myC?), ¢=ed/myc?, II* —aa—§+VlF5=1(—a) P FV,dy. (10
=II"/(myec), andn“=n*/n... Suppressing the tilde, we
arrive at the dimensionless equations Averaging over the fast variabl€ we obtain V,I';
e JA =%V, ¢, yielding the trivial solutiongo=0 andl'y =T
— +VI*=%—7%V¢, (4)  =const. Note that from Eq$6) and(8), we can deduce that
Jt Jt ng=ny =Ny andTy =T, =T,.
2A 5 Thus, as one would expect, the low-frequency motion of
DY the e-p plasma is driven by the ponderomotive pressure
F AAT Evgﬁ (7 =J)=0, ® (~II3,) of the high-frequency em field and this force, being
the same for the electrons and positrons, does not cause
Ap=€3(n"—n"), (6)  charge separation. It is also evident that, because of the sym-
metry between the electron and positron fluids, their tem-
an= peratures, being initially equal, will remain equal during the
7+V-Ji= (7)  evolution of the system. The relation between the em field

and the temperature can be found using the equdifign

with J*=n*II*/T'* and ' = (G¥)2+ (I%)2. The spe- _=const obt_air_1e.d above. By choosing the co_nstant by requir-
cies equation of state is ing that at infinityA—0 andTy—T.,, we derive

n* 1 GX(To)=G4(T..)—|A2 (11)

Fif(Tt):Fif(Tm)’

8

Note that the conditioiG?(T,.)>|A|? prevents wave break-
ing from occurring.
wheref(T*)=[Ky(LT*)T*/G*|exdG*/T~]. We are now ready to deal with the equation for the slowly

Of various techniques that could be invoked to investigatesarying envelopé\ of the em beam. To the lowest orderdn
Egs.(4)—(8) to study the self-trapping of high-frequency em one finds from Eq(5)
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FIG. 1. The nonlinearity functio¥’ versugA|? for T.,,=0.1. FIG. 2. The beam poweX versush for T.<1 andT.—1.

_Vv2A - 232Am +2no(To)A 0. (12 assumingT.,.<1, and usingny(To)="f(T,)/f(T..) along
LR0L 9oz, G, T with the asymptotic expansion§q(~1+5Ty/2) and f
(=T3), we derive for the nonlinearity function

For deriving this equation, we used the relatidh,
=\JG?(To) +|A]?=G., and ny(To)="f(To)/f(T.) which
follows from Eq.(8). In terms of the slowly varying enve-
lope A, Eg.(12) can be reduced to the following equation:

A Equations(13) and (14) admit a stationary, nondiffracting
ia—+VfA+ TA=0, (13  axially symmetric solution of the form A/\5T.
9z =U(r)exp(rz) wherer = (x?>+y?)Y? and\ is the nonlinear

, ) wave-vector shift. The radially dependent enveldpér)
where W =1—ny(T,) represents the generalized nonllnear—obeys an ordinary nonlinear differential equation
ity. Here the subscripts for the variableg,(x,,y;) are

dropped for simplicity and renormalization of the variables U 1du
z—2G,, r; —r; JG./2 is made. We also assumed without —+ - — - A\U+V(UHU=0, (15)
loss of generality thata®—1)/e’a?=2/G,., which in di- dr2 1 dr
mensional units coincides with the linear dispersion relation
of the em wave in are-p plasma, namelyw?=2w2/G,  where ¥ =1—(1—-U?)%2 This equation corresponds to a
+k?c? provided thata= w/kc. boundary value problem with the following boundary condi-
Thus, the dynamics of em beams in hot relativigip  tions: U has its maximunu, atr=0, andU—0 asr—c.
plasma has become accessible within the context of a genéiVe remind the reader that it was shown in a seminal paper of
alized nonlinear Schabnger equatiorNSE) (13). We seek Vakhitov and Kolokolov[12] that such solutions exist for
the localized 2D soliton solutions of E€L3), and analyze arbitrary saturating nonlinearity functionk, provided that
the stability of such solutions. The companion equatitil)  the eigenvalue\ satisfies 6<A<W,,, where ¥, is the
can be viewed as a transcendental algebraic relation betweamaximal value of the nonlinearity function. We consider only
T, and|A|2. Thus we conclude tha¥ is a function of|A]>  the lowest-order nodeless solution of E@5), i.e., the
[W=W(|A|®)]. Unfortunately, it is not possible, in general, “ground state,” which is positive and monotonically de-
to derive an explicit analytic relatio =W (|A|?) for arbi-  creasing with increasing In the asymptotic region the so-
trary value ofT... Some qualitative deductions readily fol- lution must decay a8J, ...~exp(—+/Ar)/Ar. Our nonlin-
low. Equation(11) shows that the presence of em radiationearity function ¥ has a maximum¥ =1 found atU,
reduces the temperatuiig. Sincedf(Ty)/dTy>0, we con- (=1), i.e., at the maximally allowed strength of the field. As
clude that the plasma density(T,) is also reduced in the a consequence the upper bound of the propagation constant
region of em field localization which is in accordance with A, must satisfyh . <W¥,,. Numerical simulations show that
adiabatic motion of the plasma. For higher strength of the enthe amplitude of the ground state solutidg,=U(r=0\) is
field, a complete expulsion of plasma, i.e., plasma cavitationa growing function ofA and it acquires its maximum value
can take placer(;,—0); this was predicted in Reff11]. Thus  (=1) atA =\.~0.29. The solution represents a trapped, lo-
the nonlinearity function¥ shows a saturating character calized em solitary beam. The stability of the solitonic solu-
with increase of the em field strengthote that the present tions can be investigated using the criterion of Vakhitov and
model is valid providedA|?/(G2—1)<1]. To illustrate, we  Kolokolov [12]—the soliton is stable against small, arbitrary
exhibit in Fig 1 a plot of ¥ versus|A|? for T.,=0.1. One perturbations ifdN/d\>0, whereN is the power of the
can see that the nonlinearity function indeed saturates at higiapped modeN(\) =2 f5drrU?(r,\). In Fig. 2 we plot
intensity. For small temperatures, we can even obtain an angie numerically obtained solutions ffor various\. Since
lytic expression for the functio. Rememberingl(<T.., the curve has positive slope everywhere, the corre-

T=1—|1— (14)

|A|2 3/2
Al
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T pearance of zero temperature is not surprising since the cor-
responding region is the “plasma vacuum;” all particles have
gone away. The dependenceMbn \ is presented in Fig. 2.
J One can see that the curie= N(\) has a positive slope and
the corresponding solitary solutions are stable against small
1 perturbations.
The detailed dynamics of the arbitrary field distribution
must be studied by direct simulations of E#3). Our simu-
L lations show that this equation, with the nonlinearity particu-
14 lar to the problem at hand, reproduces the general expected
r behavior of the NSE with saturating nonlinearitieg. For
all such systems the beam monotonically diffracts if the
FIQ. 3. Normalized em fieldJ, plasma temperatur@,, and  pegm power is below a critical valueNEN,), and it is
densityn, versusr for T..=1. trapped ifN,,>N>N.. In the latter case, the beam param-
eters oscillate near the equilibrium, ground state values.
sponding ground state solution is stable ferxO<\.. No-  These oscillations monotonically decrease with increasing
tice that the power of the solitary beam always exceeds @ue to the appearance of the radiation spectrum. For larger
certain critical valueN>N_ ~7.8. We also know thall must  the oscillations are damped out, and the formation of the
be bounded from aboveN(< N;,~10.5). soliton in its ground state takes place. If the initial profile of
For arbitrary temperatures, the explicit form oF  the beam is close to the equilibrium one, the beam quickly
=W (|AJ?) cannot be found. However, due to its saturatingreaches the ground state equilibrium, and propagates for a
character, solutions with properties similar to the small tem{ong distance without distortion of its shape. Fo¥N,,, the
perature caséwhich can be explicitly solvedmight be ex-  multistream motion of the plasma prevents the system from
pected. Using relationg8) and (11), we numerically find a  settling in a steady state.
stationary solution of Eq(13) for arbitrary T... For conve- In conclusion, applying a reductive perturbation tech-
nience we use following representation of vector potentiahique, the system of relativistic Maxwell-fluid equations was
A/A.=U(r)exp(\z), where A.= (Gi— 1)Y2. Although the  reduced to a 2D nonlinear Scliinger equation with a satu-
maximum value ofU is still restricted by the condition 0 rating nonlinearity. We found that if the strength of the em
<U,=1, the amplitude of the vector potenti&}, can reach field amplitude is below the wave breaking limit, the beam
a considerable value. For ultrarelativistic temperatufies, can enter the self-trapped regime, resulting in the formation
>1, we haveA,=/15T_>1, and since &A,<A, a soli-  of stable, self-guided 2D solitonic structures. The beam trap-
ton solution with ultrarelativistic strength of the em field is ping owes its origin to the thermal pressuvehich opposes
possible. Here we present the results of simulationsTfor the ponderomotive pressuyrén the region of beam trapping,
=1 (i.e., T.~0.5 MeV). The solution exists provided 0 the plasma density as well as its temperature is reduced and
<A<\ (=0.22). The profiles of the fielt)(r), the plasma under certain conditions these parameters can be reduced
density ny(r), and the temperatury(r) are exhibited in considerablyi.e. plasma cavitation takes place
Fig. 3 for A=0.1. One can see that in the region of field
localization the plasma temperature and density are reduced. The work of Z.Y. was partially supported by the Toray
Similar plots could be obtained for all allowed valuesxof ~ Science Foundation, and that of S.M.M. was supported by
When\— A\, plasma cavitation takes place, i.e.rat0 the the U.S. Department of Energy Contract No. DE-FGO03-
plasma density and temperature tend down to zero. The a®6ER-54346.
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